A NOTE ON TILDE ALGEBRAS

BY

R. KAUFMAN^t *Department of Mathematics, University of Illinois, Urbana, IL 61801, USA*

ABSTRACT

A closed set E is constructed so that $A^{\sim}(E)$ is an inseparable Banach space but its maximal ideal space is E.

Introduction

To each closed set E in the circle T we attach the algebras $A(E)$, $A^{\sim}(E)$, and $A^*(E)$. For examples, history, and background, we refer to [5] and [2, Ch. 12]. The algebra $A(E)$ is the set of restrictions to E of absolutely convergent Fourier series, i.e. of the so-called Wiener algebra, provided with the usual infimum as a norm. Next, $A⁰(E)$ — the tilde algebra — is defined so that its unit ball is the closure, in $C(E)$, of the unit ball of $A(E)$. Alternatively, an element f of $C(E)$ belongs to $A^-(E)$ and has norm $\leq c$ in $A^-(E)$ if

$$
\left|\int f d\mu\right| \leq c \|\mu\|_{PM} \quad \text{for all } \mu \text{ in } M(E);
$$

 $\|\mu\|_{PM}$ is the supremum of $\hat{\mu}$. Finally, an element g of $C(E)$ belongs to $A^*(E)$ and has norm $\leq c$ in $A^*(E)$ if

$$
\left|\int g d\mu\right| \leq c \limsup |\hat{\mu}(k)| \quad \text{for all } \mu \text{ in } M(E).
$$

The importance of $A^*(E)$ is seen from the (symbolic) formula $A^*(E)$ = $A(E) + A^*(E)$. In [5] a set E is constructed so that $A(E)$ is a proper, dense subspace of $Ath(E)$ (see also [2, pp. 394-401]). That is indeed a *tour de force* and we obtain the example in the Abstract with little more than a variation on

t Supported in part by the National Science Foundation.

Received April 1, 1987 and in revised form October 9, 1988

118 R. KAUFMAN Isr. J. Math.

the architecture of [5] and estimation of Fourier coefficients. Little is needed from the deeper theory of the algebra A.

1. E will be a disjoint union $\bigcup_{2}^{\infty} E_r \cup \{0\}$, each E, being a Kronecker set (so the sets E_r , shrink to 0). The sets E_r will satisfy a separation condition diam $E_r \leq \frac{1}{2}d(E_r, E \setminus E_r)$ so the partition functions w, are available $(w_r = 1$ on $E\setminus E_r$, $w_r=0$ on $E\setminus E_r$ and $||w_r||_4 \leq 3$).

Along with the sets E_r , we construct special probability measures μ_r , whose supports are exactly the sets E_r , with the following property. For every choice of integers $2 \le r_1 < r_2 < \cdots < r_n$ and every trigonometric polynomial p, such that $\int | p | d \mu_n < 1$ for each j, we have, setting $\lambda_i = p \cdot \mu_n$,

(1)
$$
\limsup_{2} \sum_{i=1}^{N} |\lambda_{i}(k)| \leq cN^{2/3} \text{ as } |k| \to +\infty, \text{ with } c = c(E) < +\infty.
$$

Now suppose g has norm $\langle 1 \rangle$ in $A^*(E)$. We'll prove that the numbers $a_t \equiv ||g||_{C(E)}$ satisfy $\Sigma_z^{\infty} a_t^4 \leq c'$. Clearly $a_t \leq 1$, and for each choice of r_1, r_2, \ldots, r_N there is a polynomial such that $\int |p| d\mu_r < 1$ for each j, and 2 Re $\int g \cdot pd\mu_n \ge a_n$. Then

$$
\frac{1}{2}\sum a_{r_j}\leq \left\langle g,\sum pd\mu_{r_j}\right\rangle\leq cN^{2/3}
$$

by the definition of $A^*(E)$ and inequality (1). Considering the decreasing re-arrangement of the sequence $(a_r)_1^{\infty}$, we get $\Sigma a_r^4 \leq (4C)^4$. In each set E_r, g coincides with an element f_r of $A(T)$, having norm at most $2a_r$. The two series $\sum w_r f_r^4$ and $\sum w_r f_r^5$ converge absolutely and represent g^4 and g^5 in E (since $g(0) = 0$).

Let ϕ be a complex homorphism of $A^{\sim}(E)$, whence $\phi(f) \equiv f(t_0)$ for some t_0 in E and all f in $A(E)$. For each g in $A^*(E)$ we have g^4 , g^5 in $A(E)$, whence $\phi(g) = g(t_0)$; since $A^{\sim}(E) = A(E) + A^*(E)$ we have $\phi(g) \equiv g(t_0)$ identically; that is, the maximal ideal space of $A⁰(E)$ is E itself. (A similar device occurs in [1] for tensor algebras and tilde tensor algebras.)

2. The set E

We denote the interval $[2^{-\nu}, 2^{-\nu} + 2^{-\nu-3}]$ by $I_{\nu} (\nu = 1, 2, 3, ...)$ and inside each I_v are draw 2^v congruent intervals J_r (2^v \leq r < 2^{v+1}) whose centers form an arithmetic progression. The intervals *J_r* are supposed to be so small that they have the separation property mentioned before. Let $\mu_{r,0}$ be the normalized Vol. 67, 1989 TILDE ALGEBRAS 119

Lebesgue measure in J_r . Using the Rudin-Shapiro polynomials ([2, p. 33], [4, p. 33], [3, p. 34]) we find a sequence $\varepsilon = \pm 1$ with this property: for the measure $\lambda_v = \sum_{i=1}^{2^{r+1}-1} \varepsilon_r \mu_{r,0}$ we have $|\lambda_v| \leq 10 \cdot 2^{\nu/2}$. (As will be clear later, our proof uses much less than this.) Let h_v be the function equal to $2^{-v/3}\varepsilon$, on the intervals J, in I_v (i.e. $2^v \le r < 2^{v+1}$), and null on the remaining intervals.

We shall construct $E_r \subseteq J_r$ so that (besides the properties already explained) each sum $\sum a_n h_n$, with sup $|a_n| = 1$, belongs to $A^-(E)$, and has norm between two positive constants $a_1(E)$, $a_2(E)$. This yields at once the inseparability of the Banach space $A^{\sim}(E)$. In particular each h_v has norm $\ge a_1 > 0$ in $A^{\sim}(E)$; this is the most difficult inequality we shall encounter. The estimations used in the sequence of approximations are collected in the next section.

3. Inequalities on Fourier coefficients

LEMMA 1. Let $-1 \leq b \leq 1$ and let $L=1,2,3,...$ Then there is a *smooth function* $u \ge 0$ *on T*, *such that* $\hat{u}(0) = 1$, $|\hat{u}(k)| \le \frac{1}{2} |b| + L^{-1/3}$ for $k \neq 0$, vanishing off the open set W:

$$
W: \left| L^{-1} \sum_{1}^{L} (\cos 3^m t) - \frac{1}{2} b \right| < L^{-1/3}.
$$

PROOF. Let $v(t) = \prod_{i=1}^{L} (1 + b \cos 3^{m}t)$ so that $v(t) \ge 0$ and $v(t) dt/2\pi$ defines a probability measure σ on T. With respect to σ we have expected values

$$
E(\cos 3^m t) = \frac{1}{2}b, \qquad 1 \le m \le L,
$$

$$
E(\cos 3^m t \cos 3^q t) = \frac{1}{4}b^2, \qquad 1 \le m < q \le L.
$$

Thus the variables $\cos 3m t - \frac{1}{2}b$ ($1 \le m \le L$) are orthogonal, with mean 0, variance $\lt \frac{1}{2}$ (by calculation). Thus there is a function $u(t) \ge 0$, vanishing off W, such that $\hat{u}(0) = 1$ and $\int |u(t) - v(t)| dt < 2\pi \cdot L^{-1/3}$; and since W is open, u can be chosen to be smooth. Now $|\hat{v}(k)| \leq \frac{1}{2} |b|$ for $k \neq 0$, whence $|\hat{u}(k)| <$ $\frac{1}{2} |b| + L^{-1/3}$.

LEMMA 2. *Let v be periodic with an absolutely convergent Fourier series, let* ϕ be a real function in $C(T)$ and f belong to $L^1(T)$ with norm $\frac{|\{f(t)\}|}{2\pi}$. Let $c_{k,N}$ denote the Fourier coefficients of $v(Nt - \phi(t)) f(t)$ for $N = 1, 2, 3, \ldots$. *Then*

(i) $|c_{k,N}| \le ||f||_1 \cdot ||v||_{PM} + \varepsilon_N$ where $\varepsilon_N \to 0$ as $N \to +\infty$, and is indepen*dent of k. Moreover, if* $\hat{v}(0) = 0$ *, then*

(ii) $|c_{k,N}| \leq \varepsilon_N$ for $|k| \leq N/2$, and ε_N has the same meaning as before.

PROOF. This is a classical procedure. By hypothesis $v(\theta) = \sum \alpha_n e(n\theta)$, with $e(\theta) = e^{2\pi i \theta}$ and $\Sigma |\alpha_n| < +\infty$, and $||v||_{PM} = \max |\alpha_n|$. Thus

$$
v(Nt - \phi(t)) f(t) = \sum \alpha_n e(nNt - n\phi(t)) f(t),
$$

$$
c_{k,N} = \sum_{n} \alpha_n \frac{1}{2\pi} \int e(nNt - kt)e(-n\phi(t)) f(t)dt.
$$

Each term in the sum has modulus at most $||v||_{PM} \cdot ||f||_1$. For each k and N there is at most one integer *n* such that $|nN - k| < N/3$. The integral containing this *n* (if there is one) is estimated by $|| v ||_{PM} \cdot || f ||_1$; the remaining contributions have a sum at most ε_N by the Riemann-Lebesgue Lemma and the convergence of $\Sigma |\alpha_n|$. This proves (i), and for the proof of (ii) we observe that when $| k | \le N/2$ and $| nN - k | < N/3$ then $n = 0$. The distinguished term in the previous inequality is therefore 0 (or it may be entirely absent) whence $|c_{k,N}| \leq \varepsilon_N$.

4. Conclusion

The measures $\mu_{r,0}$ are now successively replaced by measures $\mu_{r,q}$ $(q = 1, 2, 3, \ldots)$ such that $\mu_r = w^*$ -lim $\mu_{r,q}$, and then E, is the closed support of μ_r . When q is even, the operations are designed to make E, a Kronecker set at the conclusion, so we operate only on one of the measures $\mu_{r,a}$, leaving all the others unchanged; we multiply one of the measures $\mu_{r,q}$ by $u_q(N_qt - \phi_q(t))$, where u_q is a smooth "peak-function" on T, ϕ_q is continuous, and N_q is a positive integer chosen by Lemma 2 and the prescriptions below. When q is odd we modify a large number of the measures $\mu_{r,q}$ so as to get estimates on finite sums $\sum a_v h_v$, with $a_v = 0$ or $a_v = \frac{1}{2}$. There will be an infinite sequence of operations to be arranged in a single sequence, but this offers no serious problem. It will be convenient to suppose that $\mu_{r,q} = \mu_{r,q+1}$ whenever $r \ge 2^{q+1}$. Before the q-th step (resulting in measures $\mu_{r,q+1}$) is performed, we define a finite set $S(q)$ of integers, those satisfying one of two conditions:

(a) $|k| \leq q$, or

(b) To define this we enumerate a dense sequence $(p_i)_{i}^{\infty}$ of trigonometric polynomials in the space $C(T)$, taking $p_1 \equiv 1$. We add to $S(q)$ all integers satisfying one or more of the inequalities

$$
\left|\int p_j(t)e(-kt)d\mu_{r,q}(t)\right|>4^{-q-2}
$$

for some j and r in the range $1 \leq j \leq q$, $2 \leq r \leq 2^{q+1}$.

Vol. 67, 1989 TILDE ALGEBRAS 121

We can now say a bit more about the approximation process. When q is even, we operate on one of the measures $\mu_{r,q}$, replacing it by $u(Nt - \phi(t))\mu_{r,q}$, with $u \ge 0$, $\hat{u}(0) = 1$, etc. This can be done with the aid of Lemma 2, taking $v = u - 1$; we can attain the following inequalities for $k \in S(q)$, $1 \leq j \leq q$, $2 \le r \le 2^{q+1}$:

$$
|(p_j \cdot \mu_{r,q})^{\wedge}(k) - (p_j \cdot \mu_{r,q+1})^{\wedge}(k)| < 4^{-q-2}.
$$

Strictly speaking $\mu_{r,q+1}$ must be adjusted to have total mass 1, but this can be controlled by the zeroth coefficient and $p_1 = 1$.

For odd numbers q , the steps are more subtle. There is given a function $h = \sum a_r h_r$, with $a_r = 0$ or $\frac{1}{2}$ and we intend to approximate it on certain subsets of I_v ($1 \le v \le q$) with a single function $L^{-1} \Sigma_1^L \cos 3^m Nt$. On $J_r (2^v \le r < 2^{v+1})$ the value of h is $a_v 2^{-v/3} \varepsilon$, and we use Lemma 1 with $b_v = 2a_v 2^{-v/3} \varepsilon$, $|b_v| < 1$. Lemma 1 gives a different function u for each b_r , but the approximating sums $L^{-1} \Sigma_1^L \cos 3^m N t$ are the same. We take $L \geq 2^q$, and choose N so large (by Lemma 2) that $|\hat{\mu}_{r,q} - \hat{\mu}_{r,q+1}| < 2 \cdot 2^{-\nu/3}$ for all values of k, on the range $2^{\nu} \le r < 2^{\nu+1}$, $1 \le \nu \le q$. For $1 \le j \le q$, we require the Fourier coefficients of $p_j\mu_{r,q}- p_j\mu_{r,q+1}$ to have absolute value at most $4\cdot 2^{-\nu/3}\int |p_j(t)| d\mu_{r,q}$. (These estimates, for all values of k , are possible by Lemma 2.) We impose the same conditions, for $k \in S(q)$, as we did for even values of q. After adjusting the resulting measures $\mu_{r,q+1}$ to be probabilities we've completed the qth step. We check the necessary inequalities, beginning with the most difficult.

Let $\sigma_{v,q} = \Sigma' \varepsilon_r \mu_{r,q}$ (a sum over $2^v \le r < 2^{v+1}$). We claim that $|\hat{\sigma}_{v,q}| \le C 2^{2v/3}$ for all v and q, and some constant C. This is certainly true for $q = 0$ with a constant C', as this is a very weak form of the Rudin-Shapiro inequalities. For each fixed k, the value $\hat{\sigma}_{v,q}(k)$ changes by at most 2 (when q is even) or $2 \cdot 2^{2v/3}$ (when q is odd). Thus, at the first instance q of the inequality $|\hat{\sigma}_{y,q}(k)| >$ $(C' + 1)2^{2\nu/3}$, the upper bound $(C' + 3)2^{2\nu/3}$ remains valid. For some $r < 2^{q+1}$, we must also have $|\hat{\mu}_{r,q}(k)| > 2^{-\nu/3} \ge 2^{-q/3}$ so that $k \in S(q)$. The construction shows that for all succeeding values \tilde{q} ,

$$
|\hat{\sigma}_{\nu,q}(k)| < (C' + 2)2^{2\nu/3} + 2^{\nu} \cdot 4^{-q-1} < (C' + 3)2^{2\nu/3}.
$$

Now $\int h_y d\sigma_y = 2^{\nu} \cdot 2^{-\nu/3}$, since each μ_r is a probability measure, whence $||h_v|| \ge c > 0$ in the space $A^-(E)$. Thus each sum $\sum a_v h_v$ has norm at least $c \sup |a_{\nu}|$ in the space $A^{\sim}(E)$, since $\int h_{\nu} d\sigma_{\nu} = 0$ unless $\nu = \tilde{\nu}$. To prove the reverse inequality we can of course assume $a_r = 0$ or $a_r = \frac{1}{2}$. Let μ be a measure in E, and let μ_1 be that part of μ concentrated in $E \setminus \{0\}$. It is well known that

122 R. KAUFMAN Isr. J. Math.

 $\|\mu_1\|_{PM} \leq 2 \|\mu\|_{PM}$, and since $h(0) = 0$, we have $\int h d\mu = \int h d\mu_1$. Approximating μ_1 by measures with compact support in $E \setminus \{0\}$, our construction yields

$$
\left|\int hd\mu\right|=\left|\int hd\mu_1\right|\leq \|\mu_1\|_{PM}\leq 2\|\mu\|_{PM}.
$$

Since $|h_{\nu}| \leq 2^{\nu/3}$, we can pass from finite sums $\sum a_{\nu} h_{\nu}$ to infinite sums.

As for inequality (1), it will be sufficient to prove it for polynomials p_n in the sequence mentioned in (b). If $\int |p_n| d\mu$ _r, < 1 for $1 < r_1 < \cdots < r_N$, then the same inequality will hold with $\mu_{r,q}$ in place of μ_r , when $q > q^*$, say. If $q > q^*$ is so large that $2^q > r_N$ and $q > n$ then the Fourier coefficients of $p_n \cdot \mu_{r,q+1}$ $p_n \cdot \mu_{r,q}$ have modulus at most 2 when q is even and in that case all but one of the differences are 0; when q is odd the Fourier coefficient has modulus at most $4r_i^{-1/3}$ and then we note that

$$
4\sum_{1}^{N}r_{j}^{-1/3}\leq 4N^{2/3}.
$$

Suppose that k is an integer such that $\sum_{i=1}^{N} |\lambda_{i}(k)| > 4N^{2/3}$ and that q^{**} is large enough to insure that all restrictions placed on q are effective. Since all the measures are absolutely continuous, there is a k^{**} so that

$$
\left|\int p_n(t)\cdot e(-kt)d\mu_{r,s}^{**}(t)\right|k^{**}\quad\text{or }k<-k^*.
$$

If $|k| > k^{**}$, then there will be a first $\tilde{q} > q^{**}$ at which one of these inequalities is reversed, for some r_i . For this choice of k and \tilde{q} , we get $k \in S(\tilde{q})$. Passing to $q = +\infty$, each integral changes by at most 4^{1-q} , whence the sum for $j =$ 1, 2, 3, ..., N changes by at most $N \cdot 4^{1-q} < N^{-1/2}$. The sum at \tilde{q} , however, was at most 5 $N^{2/3}$; thus for $|k| > k^{**}$, $\sum_{i=1}^{N} |\hat{\lambda}_i(k)| < 6N^{2/3}$.

REFERENCES

1. C. C. Graham, *On a Banach algebra ofVaropoulos,* J. Funct. Anal. 4 (1969), 317-328.

2. C. C. Graham and O. C. McGehee, *Essays in Commutative Harmonic Analysis,* Grundlehren der Math. 238, Springer-Verlag, Berlin, 1979.

3. J.-P. Kahane, *Séries de Fourier Absolument Convergentes*, Springer-Verlag, Berlin, 1970. (Ergebnisse Math. 50).

4. Y. Katznelson, *An Introduction to Harmonic Analysis* (2nd edn.), Dover, New York, 1976.

5. Y. Katznelson and T. W. K6rner, *An algebra dense in its tilde algebra,* Isr. J. Math. 17 (1974), 248-260.