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ABSTRACT 

A closed set E is constructed so that A ~(E) is an inseparable Banach space but 
its maximal ideal space is E. 

Introduction 

To each dosed set E in the circle Twe  attach the algebras A (E), A ~ (E), and 

A*(E). For examples, history, and background, we refer to [5] and [2, Ch. 12]. 

The algebra A (E) is the set of  restrictions to E of  absolutely convergent Fourier 

series, i.e. o f  the so-called Wiener algebra, provided with the usual infimum as 

a norm. Next, A - (E)  - -  the tilde algebra - -  is defined so that its unit ball is the 

closure, in C(E), of  the unit ball of  A(E). Alternatively, an element f o f  C(E) 
belongs to A ~(E) and has norm < c in A ~(E) if  

=<- c II II M for all g in M(E);  

11 is the supremum of/~. Finally, an element g of  C(E) belongs to A*(E) 
and has norm < c in A*(E) if 

]fga , _-< c lim supl/~(k)l for all/z in M(E).  

The importance of  A*(E) is seen from the (symbolic) formula A~(E)= 
A(E) +A*(E). In [5] a set E is constructed so that A(E) is a proper, dense 

subspace ofA ~(E) (see also [2, pp. 394-401]). That is indeed a tour de force 
and we obtain the example in the Abstract with little more than a variation on 
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the architecture of  [5] and estimation of Fourier coefficients. Little is needed 
from the deeper theory of the algebra A. 

1. E will be a disjoint union (32 E r t3 {0}, each E, being a Kronecker set 
(so the sets E~ shrink to 0). The sets Er will satisfy a separation condition 
diam Er < ½d(E,, E \E~) so the partition functions w, are available (Wr = 1 on 

E \ E ,  wr=OonE\Erand  II wr IIA _-<3). 
Along with the sets Er, we construct special probability measures/~r, whose 

supports are exactly the sets Er, with the following property. For every choice 
of  integers 2 =< r~ < r2 < • • • < rn and every trigonometric polynomial p,  such 

that ~ I P I d#,j < 1 for each j ,  we have, setting 2j = p./2rl , 
N 

(1) l i m s u P ~ 1 2 j ( k ) l < c N  2/3 a s l k l ~ + ~ ,  wi thc=c(E)<+oo .  
2 

Now suppose g has norm < 1 in A*(E). We'll prove that the numbers 

a t - - I ]  g Ilc(E,) satisfy X~ ° ar 4 < c'. Clearly a, < 1, and for each choice of 
r~, r 2 , . . . ,  r~ there is a polynomial such that S I P [ d/z~, < 1 for each j ,  and 

2 Re Sg. pdlz~j > a,,. Then 

~ Y, ar, < (g, ~ pdlt,~) < cN 2'3 

by the definition of A*(E) and inequality (1). Considering the decreasing 
re-arrangement of the sequence (ar)~ °, we get X a 4 _-< (4C) 4. In each set E~, g 
coincides with an element f~ of A(T), having norm at most 2a,. The two series 
Z w~f4r and Z w, f  5, converge absolutely and represent g4 and g5 in E (since 

g(0) = 0). 
Let ~ be a complex homorphism ofA ~ (E), whence ¢(f)  =-fifo) for some to in 

E and all f i n  A(E). For each g in A*(E) we have ga, g5 in A(E), whence 

¢~g) = g(t0); since A ~(E) = A (E) + A*(E) we have ¢)(g) =g(to) identically; 
that is, the maximal ideal space ofA ~ (E) is E itself. (A similar device occurs in 
[1] for tensor algebras and tilde tensor algebras.) 

2. The set E 

We denote the interval [2 -v, 2 -v + 2 -v-3] by Iv (v = 1, 2, 3 . . . .  ) and inside 
each Iv are draw 2 v congruent intervals J, (2 v < r < 2 ~÷ ~) whose centers form 
an arithmetic progression. The intervals Jr are supposed to be so small that 
they have the separation property ment ioned before. Let #r,0 be the normalized 
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Lebesgue measure in Jr. Using the Rudin-Shapiro  polynomials ([2, p. 33], 
[4, p. 33], [3, p. 34]) we find a sequence tr = + 1 with this property: for the 

w X" 2 '+1-1 measure 2, - ,~2, erlZr,o we have 1)~, I < 10.2 '/2. (As will be clear later, our 
proof  uses much less than this.) Let h, be the function equal to 2-v/3er on the 
intervals Jr in h (i.e. 2' < r < 2 ,+ l), and null on the remaining intervals. 

We shall construct Er c_ Jr so that (besides the properties already explained) 
each sum X a,h, ,  with sup l a, I = 1, belongs to A ~(E), and has norm between 
two positive constants at(E), a2(E). This yields at once the inseparability of  the 
Banach space A ~(E). In particular each h, has norm ->__ a~ > 0 in A ~(E); this is 
the most difficult inequality we shall encounter. The estimations used in the 
sequence of approximations are collected in the next section. 

3. Inequalities on Fourier coefficients 

LEMMA 1. Let - l < b  < 1  and let L = 1 , 2 , 3  . . . . .  Then there is a 
smooth function u > 0 on T, such that ~(0) = 1, l a (k )  l <_- ½1 b I + L-1/3 for 
k ÷ O, vanishing off the open set W: 

L L ½b W: -l ~ (cos 3rot) -- < L  -v3. 
1 

PROOF. Let v(t) = II# (1 + b cos 3rot) so that v(t) > 0 and v(t)dt/2~t defines 

a probability measure a on T. With respect to e we have expected values 

E(cos 3mt)= ½b, 1 < m < L,  

E (cos3mtcos3q t )=~b  2, l < m < q < L .  

Thus the variables cos 3rot --½b (1 < m < L )  are orthogonal, with mean 0, 
variance < ½ (by calculation). Thus there is a function u(t) > O, vanishing off 
W, such that a(0) = 1 and S I u(t) - v(t) ldt < 2n .  L -  t/3; and since Wis open, u 
can be chosen to be smooth. Now I #(k) l _-< ½l b I for k ÷ 0, whence [ a(k) l < 
½1bl + L  -1/3 

LEMMA 2. Let v be periodic with an absolutely convergent Fourier series, let 

be a real function in C(T)  and f belong to LI(T)  with norm S[f(t) l /2~. Let 

ck~ denote the Fourier coefficients o f  v(Nt - ¢(t))f(t) for N = 1, 2, 3, . . . .  
Then 

(i) I Ck.~¢ [ < If f ill" II v + where ely --" 0 as N-- ,  + 0% and is indepen- 
dent o f  k. Moreover, i f  ~(O) = O, then 

(ii) I ck.~¢ I < eNfor I k I < N/2,  and et¢ has the same meaning as before. 
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PROOF. This is a classical procedure. By hypothesis v(O) = Z a,e(nO), with 

e(0)~-e2"~° and Xl~nt < + oo, and II v IIP  = max la ,  I. Thus 

v(Nt - fb(t)) f(t) = ~ o~,e(nNt - n~t)) f(t), 

Ck~V = Y.. a, 1 f e(nNt - k t ) e ( -  nC,(t)) f(t)dt. 
n A7~ 

Each term in the sum has modulus at most II v lieu" I[ f i l l .  For each k and N 
there is at most one integer n such that I n N -  k l<N/3 .  The integral 

containing this n (if there is one) is estimated by [[ v lieu" [[ f [[ 1; the remaining 

contributions have a sum at most eN by the Riemann-Lebesgue Lemma and 

the convergence of Z l a ,  I. This proves (i), and for the proof of  (ii) we observe 

that when [ k [ _-< N/2 and InN - k I < N/3 then n = 0. The distinguished term 

in the previous inequality is therefore 0 (or it may be entirely absent) whence 

Ic,~v I <eN. 

4. Conclusion 

The measures #r.o are now successively replaced by measures #r.q 

(q = 1, 2, 3 , . . . )  such that g~ = w*-lim g,,q, and then E, is the closed support of  

#r. When q is even, the operations are designed to make E, a Kronecker set at 
the conclusion, so we operate only on one of the measures #~.~, leaving all the 
others unchanged; we multiply one of  the measures/~r,~ by Uq(Nqt- eq(t)), 
where u~ is a smooth "peak-function" on T, ~ is continuous, and Nq is a 

positive integer chosen by Lemma 2 and the prescriptions below. When q is 

odd we modify a large number of  the measures/~,.q so as to get estimates on 
finite sums Z av hv, with a, = 0 or a~ = ½. There will be an infinite sequence of  

operations to be arranged in a single sequence, but this offers no serious 

problem. It will be convenient to suppose that #,,q = #,,q + ~ whenever r >_- 2 q + 1. 

Before the q-th step (resulting in measures #,.q+,) is performed, we define a 

finite set S(q) of integers, those satisfying one of  two conditions: 

(a) I k I < q, or 
(b) To define this we enumerate a dense sequence (pj)~ of trigonometric 

polynomials in the space C(T), taking p~ ~ 1. We add to S(q) all integers 

satisfying one or more of  the inequalities 

f p j ( t )e( -  kt)dlz,.q(t)l > 4 - q - 2  

for some j  and r in the range 1 -_<j ~ q, 2 _-<- r -_<_ 2 q÷l. 
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We can now say a bit more about the approximation process. When q is 

even, we operate on one of the measures ltr,q, replacing it by u(Nt  - ~t))lz,,q, 
with u > 0, a(0) = 1, etc. This can be done with the aid of Lemma 2, taking 
v =  u -  1; we can attain the following inequalities for k ~ S ( q ) ,  1 < j  < q, 
2 < r < 2q+t: 

I(pj "lar,q)^(k) - (Ps "/~,,q÷ 0 ^(k) I < 4 t - 2  

Strictly speaking/~r,q+~ must be adjusted to have total mass 1, but this can be 

controlled by the zeroth coefficient and p~ ~--- 1. 

For odd numbers q, the steps are more subtle. There is given a function 

h = Y. a~ h~, with a, = 0 or ½ and we intend to approximate it on certain subsets 

ofI~ (1 _-< v _-< q) with a single function L -~ Z~ cos 3raNt. On Jr (2 ~ _-< r < 2  ~+l) 

the value o fh  is a,2 -~/3e,, andwe use Lemma 1 with b, = 2a~ 2-~/3er, Ib, I < 1. 

Lemma 1 gives a different function u for each b,, but the approximating sums 

L - l  YLcos 3raNt are the same. We take L > 2 q, and choose N so large (by 

Lemma 2) that [/~r,q -/~r,q+l] <2"2-~/3 for all values of  k, on the range 

2 ~ < r < 2 ~ + t, 1 < v _-< q. For 1 _-< j < q, we require the Fourier coefficients of  

pj/z,,q- Pjg,,q+l to have absolute value at most 4.2- ' /3 SI pj(t)l d#,,q. (These 

estimates, for all values of k, are possible by Lemma 2.) We impose the same 

conditions, for k ~ S ( q ) ,  as we did for even values of  q. After adjusting the 

resulting measures/~r,q + t to be probabilities we've completed the qth step. We 

check the necessary inequalities, beginning with the most difficult. 
Let a~,q = Z' trlZ,,q (a sum over 2 ~ < r < 2~+~). We claim that I#,,q I < C22V/3 

for all v and q, and some constant C. This is certainly true for q = 0 with a 
constant C', as this is a very weak form of  the Rudin-Shapiro inequalities. For 
each fixed k, the value (7v,q(k) changes by at most 2 (when q is even) or 2 .2  2~/3 

(when q is odd). Thus, at the first instance q of  the inequality I~,,q(k) l > 
(C' + 1)2 2v/3, the upper bound (C' + 3)2 2'/3 remains valid. For some r < 2 ¢+1, 

we must also have [/~,,q(k) I > 2-~/3 __> 2-q/3 so that k ~ S ( q ) .  The construction 

shows that for all succeeding values q, 

I 8,,¢(k) ] < (C'  + 2)2 2~/3 + 2 v- 4 -q-  ~ < (C' + 3)2 2~/3. 

Now J hvda~ = 2~.2 -~/3, since each #, is a probability measure, whence 

[I h, I[ >= c > 0 in the space A ~(E). Thus each sum Z a~h, has norm at least 

c sup lav I in the space A ~(E), since S h,dao -- 0 unless v = ~. To prove the 

reverse inequality we can of course assume a~ = 0 or a, = ½. Let/z be a measure 
in E,  and let/z~ be that part of/z concentrated in E \ {0}. It is well known that 
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II/zl IIPM ---< 2 II II.M, and since h(0) = 0, we have S hdlu = ~ hdlz,. Approximat- 
ing/zt by measures with compact support in E \ {0}, our construction yields 

I f  hdlz= f hdlzl [ <  'l/z, IIeM =<_ 2 

Since Ihv I =< 2~/3, we can pass from finite sums Z avh~ to infinite sums. 
As for inequality (1), it will be sufficient to prove it for polynomials Pn in the 

sequence ment ioned in (b). If  ~1Pn I d/z,, < 1 for 1 < r~ < • • • < rs, then the 
same inequality will hold with/~r~,q in place of/zrj, when q > q*, say. If  q > q* is 
so large that 2 q > rN and q > n then the Fourier coefficients o f p .  "/tr, q+l - 
p../z,,,q have modulus at most  2 when q is even and in that case all but  one of  
the differences are 0; when q is odd the Fourier coefficient has modulus at most  
4r 7 i/3 and then we note that 

N 
4 Y. r 71/3 __< 4N~3. 

1 

Suppose that k is an integer such that E~l,~j(k) I > 4N 2/3 and that q** is large 
enough to insure that all restrictions placed on q are effective. Since all the 
measures are absolutely continuous, there is a k** so that 

I.f p,(t).e(- kt)dl4**(t) <rff 1 f o r a l l k > k * *  o r k < - k * .  

I f  I k I > k**, then there will be a first # > q** at which one of these inequalities 
is reversed, for some rj. For this choice of  k and #, we get k 6 S(#). Passing to 
q = + oo, each integral changes by at most 4 ~-q, whence the sum for j -- 
1, 2, 3 , . . . ,  Nchanges by at most  N-  4 ~ -q < N -  1/2. The sum at #, however, was 

at most  5N~3; thus for I k I > k**, Z~lAj(k) l < 6N ~3. 
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